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Introduction — post-fire recovery

* Intense, stand-replacing fires
* Rapid recovery of vegetation cover in first 10 years following fire
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Introduction — chaparral biomass

* Biomass properties change spatially, temporally

* Important for understanding carbon sequestration,
ecosystem recovery, fuel loading




Scaling biomass estimates

* Challenge is to relate
remotely sensed data to
biomass:

* Field measurements are most
accurate, most difficult

* Extend estimates of biomass
across space and through
time

e Study patterns of recovery at
relevant spatial and temporal
scales

:'5’} &

https://podaac.jpl.nasa.gov/Terra



Part 1: Introduction

* Long time series of satellite imagery allows for tracking of single area
through time, rather than chronosequence approach

* Exploratory analysis:

* Explore time series derived from satellite imagery for signal of chaparral
growth and biomass accumulation
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Conclusions

 Strong site differences
* Within same mapped vegetation type
* Within same stand age

 Need for field data

* How is biomass actually changing as stands age?



Part 2: Shrub growth rings

* Challenge: post-fire biomass accumulation occurs over longer time
periods than typical field studies

e Use growth rings as record of stem diameter at end of each growing
season

* Past studies show potential for growth ring work, but focus on age
of shrubs/stands (Stohlgren et al. 1984; Keeley 1993; Zammit and
Zedler 1993)

* Best chance of success in early stage of post-fire recovery
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Part 2: Research questions

* Do measurements of shrub growth ring change increments provide a
useful metric of biomass accumulation?

* |s the relationship between satellite-based growth metrics and
biomass sufficiently strong to indicate a potential for mapping
piomass growth at regional scales?
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Part 2: Field methods

log dry biomass

{ ,:L. 3 "? —.;é ". : - log basal area
Measure all stems within field Harvest and measure shrubs Calculate relationship,
plots apply across plot



Part 2: Growth ring methods

e Harvest stem cross section
from 5 randomly selected
Ceanothus spp. shrubs

e Sand, photograph, and
measure diameters in each year

* Estimate biomass increment
per year, assume all live shrubs
followed that pattern to
estimate plot biomass




Part 2: Methods/results <=-
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art 2: Results
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Part 3: Results
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Conclusions

* Precipitation has an important role in post fire biomass recovery
patterns

* Biomass recovery is spatially variable

* Relationships between annual growth and satellite-based vegetation
indices are promising

* Further development required to scale across larger areas
* Potential for mapping regional biomass / carbon
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