Managing Climate Change Adaptation in Forests: a Case Study from the U.S. Southwest

Lucy Kerhoulas, Tom Kolb, Matt Hurteau, & George Koch

PIPO Forest Restoration

Forest restoration thinning & burning

Low-density forests

Less competition for water & light

Increased growth in residual trees

Increased resilience against drought, pathogens & catastrophic fire

Perpetual forests

Research Questions

Forest restoration thinning & burning

- 1) Growth?
- 2) Drought resilience?
- 3) Seasonal Water Use?

Fort Valley Experimental Forest

Previous Research

- 1. Thinning creates a release effect
- 2. Large trees less responsive to thinning than small trees
- 3. Variable growth rates within large trees

Treetop

Mid-Crown Branch

Base of Live Crown

Breast Height Coarse Root

Results

 Moderate & heavy treatments had greatest release effect and this was uniform throughout large trees

Treatment

Results

2. Large trees more responisive to heavy treatment than small trees

Kerhoulas et al. 2013, Journal of Applied Ecology

Results

Moderate & heavy treatments buffered dry-year growth in large trees

Kerhoulas et al. 2013, Journal of Applied Ecology

Results

1. Trees use winter water for EW & LW regardless of size or density

Month

Alpha cellulose

Kerhoulas et al. 2017, In Preparation

a) Multivariate model using VPD, PDSI, and precipitation

Time	Model Statistics	Parameters	<i>t</i> Ratio	р
August	<i>F</i> = 13.55	PDSI	-2.23	0.01
	<i>p</i> < 0.0001	VPD	4.40	<0.0001
	$R^2 = 0.42$	Precipitation	1.46	0.15

b) Model after reverse order stepwise linear regression

Time	Model Statistics	Parameters	<i>t</i> Ratio	р
August	<i>F</i> = 18.89	VPD	-3.50	0.001
	<i>p</i> < 0.0001	PDSI	4.76	<0.0001
	$R^2 = 0.39$			

Results

2. Large trees use deeper water than small trees

Kerhoulas et al. 2013, Forest Ecology & Management

Results

3. Stem water more depleted in low-density stands

Kerhoulas et al. 2013, Forest Ecology & Management

Conclusions

- Heavier thinning treatments yield greatest release effect & drought resilience
- 2. Large trees more responsive to treatments than small trees & use deeper water source
- 3. Winter water inputs used for EW & LW growth
- August VPD & PDSI stronger influence on LW growth than precipitation

Acknowledgments

- Field help
 - Nick Kerhoulas
 - Nick Umstattd
- NAU
 - CPSIL
- Funding
 - DOE
 - NSF
 - SFAZ
 - ARCS
 - WREP
 - WRRC

Thank You!

Questions?

Talk Outline

- 1. Background SW PIPO forests
- 2. Study site & design
- 3. Tree growth responses to treatment
- 4. Tree seasonal water use

Southwestern PIPO Forests

Late 1800's: European settlement

Fire suppression & livestock grazing

Dense forests

Increased competition for water & light

Vulnerable to drought, pathogens & catastrophic fire

Trees have greater relieance on MONSOON water

