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Abstract

Context Post-fire tree mortality is a spatially struc-

tured process driven by interacting factors across

multiple scales. However, empirical models of fire-

caused tree mortality are generally not spatially

explicit, do not differentiate among scales, and do

not differentiate immediate from delayed mortality.

Objectives We aimed to quantify cross-scale link-

ages between forest structure—including spatial pat-

terns of trees—and the progression of mortality

1–4 years post-fire in terms of rates, causes, and

underlying demography.

Methods We used data from a long-term study site in

the Sierra Nevada, California to build a post-fire tree

mortality model predicted by lidar-measured esti-

mates of structure. We calculated structural metrics at

scales from individual trees to 90 9 90 m neighbor-

hoods and combined them with metrics for topogra-

phy, site water balance, and burn weather to predict

immediate and delayed post-fire tree mortality.

Results Mortality rates decreased while average

diameter of newly killed trees increased each year

post-fire. Burn weather predictors as well as interac-

tive terms across scales improved model fit and

parsimony. Including landscape-scale information

improved finer-scale predictions but not vice versa.

The amount of fuel, fuel configuration, and burning

conditions predicted total mortality at broader scales

while tree group-scale fuel connectivity, tree species

fire tolerance, and local stresses predicted the fine-

scale distribution, timing, and agents of mortality.

Conclusions Landscape-scale conditions provide

the template upon which finer-scale variation in

post-fire tree mortality is arranged. Post-fire forest

structure is associated with the etiologies of different

mortality agents, and so landscape-level heterogeneity

is a key part of ecosystem stability and resilience.

Keywords Post-fire tree mortality � Spatial patterns �
Cross-scale interactions � Delayed mortality �
Mortality agents � Sierra nevada mixed-conifer �
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Introduction

Post-fire tree mortality varies with pre-fire forest

structure (Stephens and Moghaddas 2005; Lydersen

et al. 2017; Furniss et al. 2019; Kane et al. 2019). Since

tree mortality changes forest structure, this represents

a pattern-process feedback between structure and tree

population dynamics. This feedback is an important

mechanism of ecosystem stability and resilience at

multiple scales for fire-dependent forests (Larson and

Churchill 2012; Parks et al. 2015).

Patterns of forest structure and post-fire tree

mortality emerge in the context of a hierarchy of

nested spatial scales (Kotliar and Wiens 1990; Palik

et al. 2000; Boyden et al. 2012; Hessburg et al. 2015).

Damage caused by fire and its effects on tree mortality

vary depending on characteristics of individual trees,

but also on vertical and horizontal spatial patterns at

the scales of tree clumps and larger neighborhoods

(Agee and Skinner 2005; Hessburg et al. 2005;

Kennedy and Johnson 2014; Belote et al. 2015; Clyatt

et al. 2016). For example, fire-caused mortality at the

individual tree scale is broadly due to excessive

radiative flux damaging crown and stem tissues (Smith

et al. 2016), which occurs in accordance with

individual tree characteristics like bark thickness and

crown structure (Hood et al. 2018). Vertically contin-

uous tree crowns can carry surface fires into the

canopy (Stephens 1998; Agee and Skinner 2005)

while horizontal patterns of trees can modify the way

fire moves through a stand or across a landscape

(Parsons et al. 2017, 2018). Heterogeneous patterns,

such as closely-spaced aggregates of trees and canopy

openings larger than the average mature tree crown,

result in complex wind and convection fields. These

factors induce varied and aggregated fire effects such

as small-group torching, survival of dense regenera-

tion patches with little or no surface fuels, and survival

in topographically protected areas (Fulé and Coving-

ton 1998; Stephens and Fry 2005; Kolden et al. 2012;

Parsons et al. 2017; Meddens et al. 2018). Dynamics at

these scales act to maintain and enhance pre-fire clump

and opening patterns (Kane et al. 2013, 2014). Pattern-

process linkages like these also interact across hier-

archical scales (Kotliar and Wiens 1990; Parsons et al.

2016).

Delayed post-fire tree mortality can also be affected

by structure and spatial patterns at multiple scales.

Delayed mortality, which can represent over 40% of

total fire mortality, occurs following fires of all

severities and usually takes place within 4–5 years

after fire (Youngblood et al. 2009; Fettig et al. 2010;

Hood et al. 2010; Van Mantgem et al. 2011; Prichard

and Kennedy 2012; Miller et al. 2016). Delayed

mortality can occur after nonlethal fire-caused damage

to a tree’s cambium and/or crown initiates a death

spiral, ultimately killing the tree some years later.

Common proximate agents of delayed mortality are

carbon starvation, hydraulic failure, decay, bark

beetles, wind, competition, or some combination of

these (Filip et al. 2007; Smith et al. 2016). Many

delayed mortality agents (e.g., insects, pathogens, and

competition) are density-dependent. High stand den-

sity can additionally predispose trees to compounding

stressors such as drought and bark beetles (Guarı́n and

Taylor 2005; Hood and Bentz 2007; Das et al. 2008;

Stephens et al. 2018). Like immediate mortality,

delayed morality is the result of processes acting and

interacting across scales. For example, regional

drought can interact with fine-scale patterns of tree

density and demography to drive bark beetle mortality

(Guarı́n and Taylor 2005).

Our objective was to investigate how forest struc-

ture, spatial pattern, and cross-scale interactions

influence immediate and delayed post-fire tree mor-

tality at the scales of tree groups and neighborhoods.

We sought to quantify these effects to improve the

ecological understanding of pattern-process linkages

related to post-fire tree mortality and to inform

modeling options for use by forest managers. Our

specific research questions were:

(1) How does tree mortality progress 1–4 years

post-fire in terms of mortality rates and

demographics?

(2) What elements of vertical forest structure and

horizontal pattern predict immediate and

delayed post-fire tree mortality at scales from

small groups of trees to larger neighborhood

patches?

(3) Are there interactions between effects at differ-

ent scales, and are those interactions directional

(i.e., broader to finer scales or finer to broader

scales)?

(4) How does the prevalence of different mortality

agents vary with changes in fine-scale predictors

of post-fire tree mortality?
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Methods

Study area

We studied tree mortality after the 2013 Rim Fire

within Yosemite National Park, California (Fig. 1).

The Rim Fire started on August 17, 2013 and burned

104,131 ha—including 31,519 ha in Yosemite

National Park—and was declared out on October 23,

2013. Although fire effects on the adjacent Stanislaus

National Forest included very large high-severity

patches that burned under extreme weather conditions

(Lydersen et al. 2014), effects in Yosemite were more

mixed and provide an excellent opportunity to study

the multi-scale effects of structure and pattern on tree

mortality (Kane et al. 2015a; Blomdahl et al. 2019).

One complication of using the Rim Fire to study

tree mortality is that it occurred in the midst of a multi-

year drought (Lydersen et al. 2014). The drought may

have exacerbated the post-fire stresses caused by fire

damage and possibly resulted in higher mortality rates

than would have been observed without a drought (van

Mantgem et al. 2013, 2018). However, the 2013–2015

drought was similar to projected climate conditions for

the 2050s (Cayan et al. 2008), and so results from this

study should be directly relevant to understanding the

forest dynamics of the near future.

We used post-fire tree mortality data from the

Yosemite Forest Dynamics Plot (YFDP; Lutz et al.

2012), a 25.6 ha stem mapped plot affiliated with the

Smithsonian ForestGEO network (Anderson-Teixeira

et al. 2015; Lutz 2015; Lutz et al. 2018a). The YFDP is

an old-growth sugar pine-white fir (Pinus lamber-

tiana–Abies concolor) forest ranging from 1774 to

1911 m in elevation. The YFDP was established in

2009–2010 and a census of all woody stems C 1 cm

dbh has been conducted to determine recruitment and

mortality each year since 2011.

The climate of the area is Mediterranean with cool

moist winters and warm dry summers. Thirty-year

Fig. 1 Map of study area showing the Yosemite Forest Dynamics Plot, Crane Flat Weather Station, Rim Fire severity, the 2010 lidar

acquisition, and validation plot locations. Validation plots are colored by satellite-derived fire severity class
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climate normal temperatures range from a February

minimum of - 3 �C to a July maximum of 26 �C.
Winters are moderately snowy with snow accumulat-

ing into a springtime snowpack depth of approxi-

mately 1 m. Summers consistently include several

months lacking precipitation.

Before the Rim Fire, the YFDP experienced a

period of fire suppression starting in 1900, which

interrupted a previously frequent fire regime

(29.5 year point fire return interval) (Barth et al.

2015). Contemporary pre-fire forest conditions on the

YFDP were representative of the fire-suppressed

Sierra Nevada mixed-conifer zone at large, with high

density and basal area (535.9 trees ha-1 and 64

m2 ha-1 in 2010 vs. 84.9 trees ha-1 and 24.1 m2 ha-1

in 1900) accompanied by a compositional shift from

dominance by shade-intolerant species to shade-

tolerant species (74% sugar pine and 20% white fir

in 1900 vs. 45% sugar pine and 46% white fir in 2010)

(Barth et al. 2015). Across Yosemite, this composi-

tional shift has especially affected large-diameter trees

on long-unburned sites (Lutz et al. 2009a). Pre-fire

surface fuel loads totaled 192.55 Mg ha-1, distributed

as\ 1% 1-h fuels, 1% 10-h fuels, 2% 100-h fuels,

38% 1000-h and larger fuels, 13% litter, and 46% duff

(Cansler et al. 2019).

The YFDP was burned during the Rim Fire as part

of backfiring operations started on August 31, 2013.

The backfire was lit approximately 1 km south of the

plot. The fire backed downslope into the plot around

1:30 a.m. on September 1. The plot burned through the

night and completed active burning by 11:30 on the

morning of September 2. Fire effects were mixed, with

a full range of fire severities represented (Blomdahl

et al. 2019), but predominantly low and moderate

severity effects (for more detailed burning character-

istics, see Lutz et al. 2017). The fire consumed 79% of

the total pre-fire surface fuel load (Cansler et al. 2019).

Spatial pattern predictor variables

We used pre-fire lidar-based measurements of struc-

ture and pattern to predict fire mortality. We used only

lidar-based predictors so that the resultant model could

be used to make predictions without additional ground

measurements. We used lidar data acquired on July

21–22, 2010 by Watershed Sciences, Inc. of Corvallis,

Oregon. Data were collected using dual-mounted

Leica ALS50 Phase II instruments flown at 1300 m

above ground level. Each instrument could capture up

to 4 returns per pulse at a pulse rate C 85 kHz with

a ± 14� scan angle. Pulse density averaged 11 points

m-2 across the acquisition (Fig. 1) with an increased

density of[ 30 points m-2 on the YFDP. Absolute

survey accuracy was 4.4 cm root mean squared error.

The vendor created and delivered a ground model

using TerraScan and TerraModeler software (Ter-

raSolid Oy, Helsinki, Finland).

We used individual tree detection methods

described by Jeronimo et al. (2018) to process the

lidar data into tree-approximate objects (TAOs).

TAOs represent objects resolvable by lidar, each of

which is a canopy tree along with any subordinate

trees that may be hidden by the dominant tree’s foliage

(Jeronimo et al. 2018). All subsequent lidar analysis

was done with R version 3.3.2 (R Core Team 2016).

We analyzed structure and mortality at three scales:

the TAO, the local area, and the neighborhood. The

local area refers to a virtual 0.1 ha circular plot

(17.8 m radius) centered at the middle of each TAO.

The neighborhood scale refers to 24 90 9 90 m

subplots tiling the YFDP, with 10 m of buffer between

subplots (Fig. 2a). We created predictor variables at

each scale from the lidar point cloud, canopy height

model, and TAO data.

To create predictor variables at the TAO scale we

clipped the lidar point cloud by each TAO crown

polygon and calculated the following point cloud

statistics corresponding to structure: canopy cover in

strata from 0–2 m, 2–4 m, 4–8 m, 8–16 m, 16–32 m,

and[ 32 m (Kane et al. 2013) and the height of the

highest return. We calculated additional predictors

based on published models for crown base height,

crown fuel weight, crown bulk density, and leaf area

index (Table 1). We recognize that these metrics may

not correspond well to field measurements (Jakubow-

ski et al. 2013; Kramer et al. 2014, 2016), but our

exploratory analysis showed them to be useful and

interpretable as relative indices. We estimated crown

volume by idealizing each TAO crown as a paraboloid

with crown length equal to TAO height minus

estimated crown base height, and crown spread equal

to the radius of a circle with an area equivalent to the

TAO’s footprint area (Fig. 2b). Lastly, we assigned

each TAO membership in a clump following methods

developed for stem maps by Larson and Churchill

(2012) and adapted for TAOs byWiggins et al. (2019)

and Jeronimo et al. (2019), where TAOs are
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Fig. 2 a Schematic of scales used in this study. The TAO scale

represents individual trees or closely grouped clusters of trees

identified by lidar. The local area scale is a 0.1 ha circular plot

placed around each TAO. The neighborhood scale is a

90 9 90 m fixed window. The Yosemite Forest Dynamics Plot

was subdivided into 24 neighborhoods and 48 more neighbor-

hoods were sampled centered on our validation plot dataset.

b Annotated TAO point cloud clipped from dark grey outline in

panel a. Canopy cover is calculated in bins shown by the

markings on the left side. Crown volume is estimated using a

paraboloid extending from the TAO high point to the estimated

crown base (Table 2), and with a radius such that the circle

shown at the crown base has an area equal to the TAO footprint.

Height pole is in 5 m increments

Table 1 Models used to

create some of the tree-

approximate object-scale

predictor variables

P25, P50, P90 25th, 50th,

and 90th percentile lidar

return heights, respectively,

CC canopy cover, or

proportion of lidar first

returns with heights C 2 m

Structural metric Crown base height (m)

Model form ((3.254 ? 0.13 9 P25 - 0.021 9 P90 - 0.039 9 CC) ? 0.214)2

Ecoregion East Cascades, Washington

Citation Erdody and Moskal (2010)

Structural metric Crown fuel weight (kg ha-1)

Model form exp((- 0.536 ? 0.031 9 CC) 9 1.028) 9 1000

Ecoregion East Cascades, Washington

Citation Erdody and Moskal (2010)

Structural metric Crown bulk density (kg m-3)

Model form exp((- 3.696 ? 0.025 9 P25 - 0.03 9 P50 ? 0.029 9 CC) 9 1.032)

Ecoregion East Cascades, Washington

Citation Erdody and Moskal (2010)

Structural metric Leaf area index (m2 m-2)

Model form - 2.907 9 ln(1 - CC)

Ecoregion Puget Lowlands, Washington

Citation Richardson et al. (2009)

123

Landscape Ecol (2020) 35:859–878 863



considered members of the same clump if their high

points are within 6 m of one another. We used clump

size as an additional TAO-level predictor.

At the local area scale we calculated measures of

density and canopy openings. We calculated TAO

density within the 0.1 ha plot and estimated basal area

using height–diameter regressions from Jeronimo

et al. (2019). We quantified open space using the

open space transform (Churchill et al. 2013, 2017); we

overlaid a 0.5 m grid on each plot and calculated the

distance from each grid cell center to the nearest TAO

high point. We took the mean of these values for each

0.1 ha plot as an open space index.

Lastly, we calculated metrics for each 90 9 90 m

neighborhood. We calculated TAO density, canopy

cover\ 2 m, and canopy cover C 2 m. We used

rumple (canopy surface roughness; Kane et al. 2010)

as an index of structural complexity. To characterize

spatial pattern we calculated the mean clump size and

the proportion of neighborhood area[ 9 m from a

TAO high point, an index of open space (Jeronimo

et al. 2019).

To correct for edge effects (i.e., TAOs spanning a

neighborhood boundary and containing unsampled

trees outside the neighborhood) we constrained mod-

eling to use only TAOs whose high points were at least

5 m from the edge of the 90 9 90 m neighborhood.

This removed 489 TAOs from analysis.

Topography, water balance, and burn weather

predictors

We included topographic, water balance, and burn

weather predictors for each neighborhood in the YFDP

(and in the independent validation plots, below) since

these variables have been shown to be important

predictors of fire severity (Miller and Urban 1999;

Kane et al. 2015b; Blomdahl et al. 2019). We used

actual evapotranspiration and climatic water deficit

data from Flint et al. (2014). We calculated slope at

30 m and 270 m scales and topographic position index

at 500 m, 1 km, and 2 km scales (Weiss 2001; Kane

et al. 2015b). We used FireFamilyPlus version 4.2

(USDA 2016) to calculate daily burning index, energy

release component (ERC), maximum temperature,

minimum relative humidity, and mean wind speed

from the Crane Flat Weather Station, which is

located\ 1 km from the YFDP (Station ID 044,102)

(Fig. 1). We assigned these values to each

neighborhood according to the date of burning, which

was taken from daily fire progression maps (Lydersen

et al. 2014).

Fire mortality response variables

The YFDP was surveyed for tree mortality in each

post-fire year 2014–2017, allowing determination of

immediate mortality (dead by the time of May 2014

census) versus delayed mortality (alive in 2014 but

dead by May 2017 census) and survivorship (alive at

May 2017 census). Each tree was assigned one or more

causes of mortality based on observable conditions.

We only examined trees C 10 cm dbh to match

diameter cutoffs from commonly used fire mortality

models (e.g., FOFEM; Ryan and Reinhardt 1988).

This excluded 22,528 trees with 1 B dbh\ 10 cm

from our analysis. We removed 49 trees with mortality

causes that were not directly attributable to fire (e.g.,

small trees crushed by falling debris). We did not

consider trees that were dead pre-fire nor trees that

showed very low vigor (imminent mortality) in the

2017 survey (n = 4358). An additional 2925 trees

were situated within the buffer zones between neigh-

borhoods and 1323 trees were removed from analysis

due to the edge corrections.

In preliminary analyses we found that models

predicting numbers of trees killed had more predictive

power than models predicting proportions of mortality

at TAO and neighborhood scales. Thus, we formulated

model responses in terms of numbers of trees killed.

To allow for indirect calculations of proportional

mortality rates we also simultaneously modeled num-

bers of live trees pre-fire. The ratio of modeled

mortality to modeled density can provide a normalized

estimate of mortality rates.

We prepared response variables at two scales. At

the TAO scale we counted the number of trees that

were members of each TAO, matching mapped trees

to TAOs by finding minimum distances between

mapped trees and TAO high points (Jeronimo et al.

2018). We then partitioned these into counts of

immediate mortality, delayed mortality, and survivor-

ship for each TAO. At the neighborhood scale we

calculated tree density (trees ha-1) andmortality (trees

ha-1), without separating immediate from delayed

mortalities.
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Independent validation plots

We installed 48, 1/4-ha validation plots covering the

full elevational and fire severity ranges of the Rim Fire

in Yosemite where it was covered by the 2010 lidar

acquisition (Fig. 1). The range of sampling for the

validation plots included sites warmer and drier than

the YFDP (generally more Pinus ponderosa-domi-

nated) as well as cooler, wetter sites (generally more

Abies magnifica-dominated).

Plots were located by random selection in clustered

locations at least 100 m from a road or trail, but within

2 km of road or trail access. Plots were stratified a

priori by satellite-derived burn severity as calculated

by Blomdahl et al. (2019) (Fig. 1), and were installed

in May to July 2017. Plots were 50 9 50 m squares

oriented to the cardinal directions. One corner of each

plot was geo-located using a Topcon HiPer V GPS

recording at 1 Hz for an average of 60 min (range 17

to 120 min). The rooting location of each tree C 10

cm dbh was measured and mapped whether it was

alive or dead and either standing or down. Tree status

was determined from visual cues such as remnant

foliage, bole and basal charring and consumption,

presence of pitch on the bole, and local soil burn

severity, and was classified as either healthy, declin-

ing, nearly dead, recent non-fire mortality, immediate

fire mortality, delayed fire mortality, or dead pre-fire.

Field crew members drew from several years of

experience evaluating tree mortality on the YFDP both

pre- and post-fire to evaluate tree status.

For each validation plot we calculated lidar metrics

on 90 9 90 m squares centered on the 50 9 50 m

plot. Similar to the edge correction used for the YFDP

data, we only included TAOs with high points at least

5 m from the edge of the plots. Together, the 24

90 9 90 m neighborhoods from the YFDP and the 48

neighborhoods from the validation plots spanned a

wide range of conditions in terms of topography, water

balance, and burn weather (Tables A1, A2).

Statistical analysis

We modeled post-fire tree mortality as a set of four

generalized linear models in a Bayesian framework

(Table 2). At the TAO scale, we modeled the number

of trees per TAO partitioned into immediate mortality,

delayed mortality, and survivors. At the neighborhood

scale we modeled the total number of mortalities, first

using only structural predictors and then additionally

including topography, water balance, and burn

weather predictors. Lastly, we tested a formulation

of the full model that was hierarchically structured

across scales compared to separate models for each

scale. The hierarchically structured model included an

interaction term between number of trees killed at the

neighborhood level and the TAO level (Fig. 3; see

Online Resource 1 for complete model definitions).

We combined the validation plots with the YFDP

data for the neighborhood-level modeling to capture

more representative ranges of variation because vari-

ation in topography, water balance, and burn weather

was low across the YFDP relative to variation that

occurs across the Sierra Nevada mixed-conifer zone.

For the TAO-scale models, however, we used only the

YFDP data and retained the validation plots as an

independent testing data set.

Neighborhood-level models used 72 neighbor-

hoods, 2620 TAOs and associated local areas, and

10,767 trees C 10 cm dbh. Sample sizes for the TAO-

level models, which did not include the validation

plots, were 24 neighborhoods, 1773 TAOs and local

areas, and 7488 trees C 10 cm dbh.

We estimated posterior distributions of parameters

for all models using JAGS 4.2.0 Markov chain Monte

Carlo sampling software (Plummer 2003, 2016a)

within the rjags package (version 4.6; Plummer

2016b) in the R environment (version 3.3.2; R Core

Team 2016). For initial testing each model was run

with two chains, 500 adaptation iterations, 500 burn-in

iterations, and 5000 sampling iterations. Convergence

was judged based on visual assessment of the posterior

distributions for the model coefficients and by the

Gelman–Rubin diagnostic (accepted at values B 1.1;

Gelman and Rubin 1992). Parameters were estimated

Table 2 Four tree mortality model formulations tested

Model Structural

predictors

Topography, water

balance, and burn

weather predictors

Cross-scale

linkage

S Yes No No

ST Yes Yes No

SL Yes No Yes

STL Yes Yes Yes

See text Statistical analysis section for a description of the

different components. See Fig. 2 for a graphical representation

of modeling relationships
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as the mean of the combined distributions of the two

chains. We used posterior predictive checks to confirm

that the posterior distributions represented the data

well (Gelman et al. 2004); Bayesian p-values were all

between 0.45 and 0.55.

We used a stochastic search variable selection

(SSVS) procedure (George and McCulloch 1993) to

narrow down the list of variables used in the models

(Online Resource 1). This procedure pairs each

predictor with a Bernoulli-distributed inclusion

parameter that indicates whether the variable is a

likely predictor for each link in the Monte Carlo chain

given the observed data. The posterior estimates for

the Bernoulli distributions’ inclusion parameters rep-

resent the proportion of links where the given variable

was a likely predictor, and can be interpreted as

importance values. We tuned the SSVS to select four

predictors per link on average.

We selected the final set of models from among the

tested options (Table 2) using two criteria. For the

TAO-level models, which had separate training and

testing data, we used the log predictive density scoring

function (LPD; Gelman et al. 2014) to select the best

model. For the neighborhood-level models, which did

not have separate training and testing data, we used the

posterior predictive loss function (Dsel; Gelfand and

Ghosh 1998). After choosing a model form with these

criteria, we chose subsets of predictor variables by

iteratively removing those with the lowest importance

values until all predictors were included in at least

60% of Monte Carlo links.

We performed final model runs using the same

procedures described above for the model selection

runs, but with three chains, 2000 adaptation iterations,

2000 burn-in iterations, and 20,000 sampling itera-

tions. We then evaluated absolute accuracy by calcu-

lating the root mean squared prediction errors on both

training and testing datasets.

Mechanistic interpretation of model results

We took the most important predictor at each of the

TAO and local area scales to investigate possible

mechanisms through which these structural character-

istics affect fire mortality at fine scales. We stratified

the range of each of these predictor variables into 10

bins so that each bin contained an approximately equal

number of trees. We compiled the list of factors

associated with mortality—of which each tree could

have several—for each bin and normalized this list to

Fig. 3 Flowchart of data sources, conceptual formulation of

mortality model, and relationships to study questions. For the

data sources, the Yosemite Forest Dynamics Plot (YFDP)

dataset was used to create models at all three scales, while the

validation plot dataset was used to build the neighborhood level

models and to validate models at all scales. In the model

schematic, black arrows represent explanatory variables being

used to predict a response variable, while the dashed arrow

between response variables represents a cross-scale linkage

where an interaction term was included between neighborhood-

level mortality and TAO-level mortality. Models were tested

both with and without this term. Labels Q1–Q4 represent the

four study questions: labels are placed next to the data source,

interaction, or model analyzed to answer each question
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sum to one to get proportions of mortality factors in

different categories.

For immediate mortalities we used the following

categories of mortality agents: suppression, pathogen

(almost all root rots of genus Armillaria), beetle

(genera of Scolytinae), mechanical, fire crown dam-

age, fire stem damage, and fire-induced mechanical

collapse, the latter of which refers to trees that suffered

mechanical failures due to combustion of structural

tissue (generally heartwood). Fire crown damage and

fire stem damage almost always were recorded

together; to help differentiate between them we only

included the one that was recorded as more severe in

the field survey. For delayed mortalities we first

compared fire-related factors to non-fire related fac-

tors, then evaluated relative proportions of non-fire-

related factors alone.

We took these mortality proportion data to repre-

sent contingency tables (i.e., a matrix where each cell

gives the number of mortalities related to a given agent

within a given structural stratum). We calculated v2

statistics for these tables and performed an iterative

procedure to reduce the 10 bins to the two most highly

contrasting bins possible. At each step we tested every

pair of adjacent bins to see which yielded the highest

v2 statistic when combined. We repeated this until we

were left with only two bins, ensuring that the v2

statistic was significant at each step. From this we

were able to identify a threshold for each of the

structural predictors tested along with an effect on

causes of mortality at that threshold.

Results

Immediate and delayed mortality in the YFDP

Of trees C 10 cm DBH in the YFDP that were alive in

2013 (n = 11,974), 39% died immediately after fire,

24% died 2–4 years post-fire, and the remaining 37%

were alive in May 2017. Mortality decreased over

time: 62% of mortalities occurred in the first year

(2013–2014) followed by 22% in the second year,

12% in the third year, and 4% in the fourth year.

Mortality rates decreased similarly, with a rate of 39%

the first year, 23% of remaining live trees the second

year, 16% the third year, and 6% the fourth year

(Fig. 4). In general, smaller trees died either in the fire

or soon thereafter and larger trees died in later years

(Fig. 4). The quadratic mean diameter of trees that

died in the first year was 21.0 cm, followed by

27.6 cm in the second year, 57.8 cm in the third year,

and 55.1 cm in the fourth year. Proportional mortality

rate estimates and pre-fire density models are reported

in Online Resource 1.

Validation plots

The 48 validation plots spanned from 1430 to 2250 m

elevation and covered forest types ranging from low

montane P. ponderosa–Quercus chrysolepis to high

montane A. magnifica (Table A3). Density of trees

C 10 cm dbh ranged from 85 to 1005 trees ha-1 and

basal area ranged from 14 to 122 m2 ha-1. Species

included all those found in the YFDP as well as Pinus

contorta, P. jeffreyi, andQ. chrysolepis. Mortality was

estimated as 56% immediate and 44% delayed after

applying a correction factor (Online Resource 2). In

total, 5686 trees were sampled on the validation plots

of which 3279 were included for analysis after the

edge correction.

Model results

At the neighborhood scale, including the selected

water balance and burn predictors had the largest

effect on accuracy, improving Dsel values by 54%

(Model S vs. Model ST) (Table 3). In contrast,

including the cross-scale linkage (Models SL, STL)

Fig. 4 Rates and demographics of tree mortality for trees C 10

cm dbh on the Yosemite Forest Dynamics Plot (YFDP) for three

pre-fire censuses and four post-fire censuses. QMD quadratic

mean diameter. Point locations on the x-axis are resolved to the

month of each annual census. The vertical line representing the

Rim Fire is on August 31, 2013, the date when the Rim Fire

entered the YFDP
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Table 3 Model assessment statistics for the four tested model formulations

Neighborhood scale Model Dsel RMSE (trees ha-1)

Immediate mortality Delayed mortality Total mortality

S 926,699 78.7 63.4 89.4

ST 426,853 70.8 44.3 84.8

SL 924,992 76.8 63.4 89.4

STL 426,432 70.1 43.9 84.4

Tree-approximate object

scale

Model LPD RMSE (n trees)

In-sample Out-of-sample

Immediate

mortality

Delayed

mortality

Immediate

mortality

Delayed

mortality

S - 5716 1.693 1.759 1.898 1.388

ST - 5394 1.693 1.759 1.897 1.387

SL - 4842 1.638 1.734 1.886 1.398

STL - 4793 1.613 1.706 1.885 1.403

The best statistic for each column is in bold italic face

RMSE root mean squared error, Dsel posterior predictive loss function (Gelfand and Ghosh 1998), where lower numbers represent a

better and more parsimonious model fit, LPD log predictive density (Gelman et al. 2014), where higher (less negative) numbers

represent a better and more parsimonious model fit

Table 4 Predictors selected for the final models, importance values from the stochastic search variable selection (George and

McCulloch 1993), and signs of predictor relationships to mortality and survival

Sub-model Predictor Importance value Sign

Neighborhood mortality Actual evapotranspiration (mm H2O year-1) 1.00 ?

Open space (proportion) 1.00 -

Energy release component (BTU ft.-2) 0.99 -

Maximum burn day temperature (�C) 0.96 ?

Canopy cover[ 2 m (%) 0.88 ?

Rumple (m2 m-2) 0.80 ?

I D S

TAO immediate mortality Maximum height (m) 1.00 - ? ?

Canopy cover\ 8 m (%) 1.00 ? - -

Mean clump size in local area (n TAOs) 0.99 ? - -

Local area open space (%) 0.89 - - ?

Leaf area index (m2 m-2) 0.73 ? ? -

TAO delayed mortality Local density (TAOs ha-1) 1.00 ? ? -

Canopy cover 8–16 m (%) 0.99 - ? ?

Canopy cover\ 2 m (%) 0.99 ? - -

Crown fuel weight (kg) 0.88 - - ?

Crown base height (m) 0.86 - ? ?

Importance values represent the proportion of times in a Monte Carlo chain that the variable in question was selected to be included

in the model, based on the likelihood of the predictor variable given the observed data. For the TAO-level models, which had

trinomial responses, signs are reported for each response category (I immediate, D delayed, S survival). Note that energy release

component is expressed in non-standard units. One BTU ft.-2 is equal to approximately 11.357 kJ m-2
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had only a minute effect on the neighborhood-level

models (\ 0.2%). Model STL, which included topog-

raphy, water balance, and burn weather predictors as

well as the cross-scale linkage, performed best overall

(Table 3). The top predictors for this model were AET,

open space, ERC, maximum burning day temperature,

canopy cover[ 2 m, and rumple (Table 4). Root

mean squared prediction error (RMSE) was 70 trees

ha-1 C 10 cm dbh.

In contrast to the neighborhood-level models, the

cross-scale linkage had a substantial effect on TAO-

level mortality models, improving the LPD value by

18% (Model S vs. Model SL). Including topography,

water balance, and burn weather predictors had a

smaller effect, improving LPD by 6% (Model S vs.

Model ST) (Table 3). Like the neighborhood models,

Model STL performed best at the TAO scale. The top

predictors for the immediate mortality component of

this model were maximum TAO height, canopy

cover\ 8 m, mean clump size in local area, open

space in local area, and leaf area index. The number of

delayed mortalities was best predicted by local TAO

density, canopy cover 8–16 m and\ 2 m, crown fuel

weight, and crown base height (Table 4). When

predicted back on the YFDP training data, the number

of immediate mortalities C 10 cm dbh per TAO had

an RMSE of 1.6 trees and the number of delayed

mortalities had an RMSE of 1.7 trees. Predicting on

the out-of-sample validation plots, RMSE for number

of immediate mortalities C 10 cm dbh was 1.9 trees

and RMSE for delayed mortalities was 1.4 trees.When

these numbers were summarized up to the neighbor-

hood scale, the RMSE for immediate mortali-

ties C 10 cm dbh was 70.1 trees ha-1 and was 43.9

trees ha-1 for delayed mortalities (Table 3). See

Online Resource 1 for fitted model coefficients.

Relationships between fine-scale structure

and mortality agents

Immediate mortalities were overwhelmingly fire-

related, with nearly 98% of mortality factor records

attributed to fire crown damage, fire stem damage, and

fire-mechanical damage (n = 1321). At the TAO

scale, the proportion of mortalities attributed to crown

damage was higher when the dominant canopy of a

TAO was\ 51 m tall (74% vs. 66%; p\ 0.001). The

increase in crown damage mirrored a decrease in stem

damage of similar magnitude (Fig. 5). At the local

area scale, crown damage decreased and stem damage

increased by five percentage points when mean clump

size was[ 23 TAOs (p\ 0.05). Fire-mechanical

mortalities (total n = 12) were five times more com-

mon when TAO height was[ 51 m (4 vs. 20 tree

mortality events) and when local area mean clump size

was[ 23 TAOs (6 vs. 31 tree mortality events)

(Fig. 5).

Delayed mortalities also were dominated by fire-

related mortality factors (71%, n = 1206). At the TAO

scale the proportion of mortality factor records that

were fire-related was 14 percentage points lower when

crown base height was[ 28 m (p\ 0.001). At the

local area scale fire-related mortality was 22 percent-

age points higher when TAO density was[ 170 ha-1

(p\ 0.001) (Fig. 5).

Of the non-fire related factors, bark beetles and

pathogens accounted for the most mortality, 46% and

34% respectively, followed by suppression with 16%

of mortality records and mechanical damage with the

remaining 4%. When TAO crown bases were higher

than 18 m, beetle mortalities were 11 percentage

points higher, pathogen mortalities were 7 percentage

points lower, and mechanical mortalities decreased

from 6.4 to 2.7% (p\ 0.001). Suppression mortalities

did not differ with crown base height. At the local area

scale, TAO densities greater than 180 ha-1 were

associated with less beetle kill (48% reduced to 23%),

more pathogenic mortality (32% to 50%), and more

suppression (15% to 22%). The share of mortalities

attributed to mechanical damage did not differ with

TAO density.

Discussion

We found that patterns of post-fire tree mortality are

driven by multiple factors interacting across scales. A

theory of cross-scale interactions has been developed

for fire regimes (Heyerdahl et al. 2001; Falk et al.

2011; Parks et al. 2012; Merschel et al. 2018), but

has not been described for fire effects within an

individual fire. As fire moves contagiously across a

landscape its ultimate effects are determined by a

complex of processes occurring at and interacting

between multiple scales (Falk et al. 2007; McKenzie

and Kennedy 2011). This study represents a step in

the development of the landscape ecology of fire and

suggests that formalizing the hierarchical structure of
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landscapes in empirical models is a productive way

to advance the ecological understanding of distur-

bance processes.

Mortality rates and agents over time

Most mortality on the YFDP occurred in the first year

(62% of mortalities compared to 55–90% in the

literature) and subsequent years showed monotoni-

cally decreasing amounts of tree death (Fig. 4)

(Keyser et al. 2006; Hood and Bentz 2007; Hood

et al. 2010; Prichard and Kennedy 2012). First-year

mortality occurred disproportionately in small trees

and mortality in subsequent years advanced through

larger diameter classes (Fig. 4) (Breece et al. 2008;

Youngblood et al. 2009; Van Mantgem et al. 2011).

Previous work has suggested that immediate mor-

tality is due mainly to direct fire effects—i.e., crown

and cambium damage—while delayedmortality is due

to stress from non-lethal damage predisposing trees to

other agents of mortality (Youngblood et al. 2009;

Woolley et al. 2012; Smith et al. 2016). This explains

the advance of mortality from small trees to larger

trees over time, since larger trees more likely to be

damaged than immediately killed by direct effects and

because agents of delayed mortality, particularly bark

beetles, tend to favor larger trees (Breece et al. 2008;

Hood et al. 2010; Jenkins et al. 2014). Our results

partially support this model, but suggest additional

complexity. For example, we observedmany instances

of fire damage to vascular and foliar tissue leading to

mortality 2–4 years post-fire with no other apparent

mortality agents (Fig. 6). This delayed first-order

mortality is likely due to the death of fine roots

limiting the amount of water available to the crown,

which can either be caused by direct damage to fine

roots (O’Brien et al. 2010) or by phloem death low on

the bole prohibiting photosynthate from reaching the

roots (Hood 2010).

Model accuracy

The accuracy of modeling post-fire tree mortality

based on pre-fire structure measurements is limited

due to the stochasticity of fire as a physical process

(Furniss et al. 2019). For example, at scales of tens of

thousands of hectares, Kane et al. (2015b) predicted

fire severity at a 30 m grain size resulting in a pseudo-

r2 value of 0.50 and Lydersen et al. (2017) created a

similar model with a pseudo-r2 value of 0.46. At finer

scales, Furniss et al. (2019) predicted death of

individual trees from pre-fire structure with accuracies

ranging from 75 to 88%. In comparison, our neigh-

borhood-level mortality model had an r2 value of 0.67

and our TAO-level immediate mortality and delayed

mortality models had r2 values of 0.55 and 0.48,

respectively. We suspect the disparity in accuracy

between scales may be driven by errors in assigning

field-measured trees to lidar-identified TAOs. TAOs

are, by nature, roughly defined and it can be difficult

bFig. 5 Relationships between structural predictors of tree-

approximate object (TAO)-scale mortality and agents of

mortality in three categories: immediate mortality, delayed

mortality comparing fire-related mortality agents to non-fire

agents, and delayed mortality comparing among only non-fire

agents. For each category the left-hand chart shows the most

important predictor measured at the TAO scale and the right-

hand chart shows the most important predictor measured at the

local area scale (see Fig. 2). For each predictor we identified the

threshold that best differentiated between mortality agents. The

charts show the difference in proportions of mortalities

attributed to each agent between trees in TAOs above the

threshold versus TAOs below the threshold. For example, when

a bar points to the left, it means the associated mortality agent is

more prevalent for trees in TAOs below the given threshold

Fig. 6 Predominance of mortality factor classes for trees C 10

cm dbh on the Yosemite Forest Dynamics Plot (YFDP) for three

pre-fire censuses and four post-fire censuses reported on the

basis of individual trees. ‘‘Fire factors only’’ refers to trees that

had no observable conditions contributing to death except fire

damage, ‘‘non-fire factors only’’ refers to trees that had no

observable fire damage, and ‘‘mixed factors’’ refers to trees for

which both fire-related and non-fire related conditions con-

tributing to death were observed. Point locations on the x-axis

are resolved to the month of each annual census. The vertical

line representing the Rim Fire is on August 31, 2013, the date

when the Rim Fire entered the YFDP
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definitively match a stem map with a TAO map.

However, there is much more certainty when delin-

eating which trees occur within a neighborhood, since

the neighborhoods we used contain greater interior

space than a TAO does. Thus, the accuracy of the

response variables (numbers of trees killed) may be a

major differentiating factor in model accuracy

between scales.

Model accuracy certainly would improve with the

inclusion of species composition data; however,

accurate mapping of species composition is presently

not possible at the same scale and resolution as is

possible for lidar structure data. Other potential

predictors that may have improved model accuracy

include shrub cover (Lutz et al. 2017), multi- or

hyperspectral orthoimagery and derived indices, and

higher spatial and temporal resolutions of burning

weather data. None of these data were available for our

study area and, indeed, are not commonly available

with or derivable from lidar.

An important characteristic of the selected model

(Model STL) is that accuracy in terms of RMSE was

nearly identical for predictions on in-sample training

data compared to predictions on out-of-sample testing

data (Table 3). Our validation plot dataset, which was

not used to fit TAO-level models, covers a wide range

of environmental conditions spanning the diversity of

elevation, aspect, and fire severity that the Rim Fire

burned through in Yosemite. The fact that predictions

on this dataset are similarly accurate to predictions on

the geographically constrained training dataset indi-

cates that the model properly captures some mecha-

nisms driving tree mortality and can be applied

throughout the mid-montane Sierra Nevada mixed-

conifer zone, within the environmental bounds cap-

tured by our validation plots.

Multi-scale drivers of fire mortality

The neighborhood-scale mortality predictors fell into

three categories: fuel amounts, fuel configuration, and

burn weather (Table 4; Fig. 7). Canopy cover and

AET are correlated with fuel amounts, where canopy

cover gives the amount of canopy fuels and AET is

related to site productivity and thus shrub and herb fuel

loads as well as proportions of shade-tolerant under-

story trees (Lutz et al. 2010; Kane et al. 2015b). Fuel

configuration was characterized by open space pro-

portion and rumple, which are measures of overstory

fuel breaks and canopy complexity, respectively

(Kane et al. 2010, 2014). Burn weather was charac-

terized by maximum temperature on burn day and

ERC. Surprisingly, higher ERC values were associ-

ated with less mortality (Table 4), contradicting

previous findings using this index (Williams et al.

2015; Lydersen et al. 2017). The most likely expla-

nation for this is that all neighborhoods burned at

relatively high ERC values—92% over the high-

severity threshold of 72 identified by Lydersen et al.

(2017) (Table A2)—and so ERC acted as an interac-

tive term damping the effect of the highest maximum

temperatures. Topographic predictors like slope and

topographic position were not themselves important

predictors, but do affect AET. This suggests that the

importance of topography was mainly expressed

through its role in modulating growing conditions,

and that the influence of burn weather on fire severity

was greater than the influence of topography.

Mortality predictors at the TAO scale fell into

categories of fuel connectivity, fire tolerance, and

local stress (Fig. 7). Conditions in these categories

acted as a series of filters determining whether a tree

escaped fire damage, died immediately, died

2–4 years post-fire, or recovered. Fuel connectivity

was represented in the immediate mortality model by

canopy cover\ 8 m, local area open space, and mean

clump size in local area and in the delayed mortality

model by canopy cover\ 2 m, canopy cover 8–16 m,

and crown base height. These factors indicate different

aspects of surface and understory fuels, ladder fuels,

and horizontal canopy fuel breaks. Trees situated

within TAOs and local areas with low vertical and

horizontal connectivity were more likely to survive,

probably because they experienced less initial fire

damage. Fire tolerance determined whether a tree died

immediately or went on to experience delayed mor-

tality. This was indicated by TAO height, since larger

trees are more likely to survive fire by virtue of their

thicker bark and greater access to resources (Ryan and

Reinhardt 1988; Hood et al. 2007; Furniss et al. 2019),

and TAO leaf area index, where a high value usually

indicates the presence of shade-tolerant, fire-intolerant

species (Lusk 2002; Gersonde and O’Hara 2005).

Lastly, local stress conditions predicted the amount of

delayed mortality. These predictors were density in the

local area and crown fuel weight. Local TAO density

represents nearby competition for moisture resources,

a major mortality factor in the Sierra Nevada (Young
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et al. 2017). We expected that higher crown fuel

weights would be associated with more mortality, but

we observed the opposite relationship (Table 4). This

emphasizes the ‘‘series of filters’’ concept: if a tree has

low local fuel connectivity, then high crown fuel

weight may simply indicate the large, healthy crown

of a tree that is prepared to persist through stresses.

We recognize that our use of lidar as the primary

predictive data source limits our ability to fully

characterize fuel matrices. We included various mea-

sures of cover in and below the main canopy as

predictor variables to represent amounts of material in

lower fuel strata above the ground surface. These

metrics can characterize certain surface fuels such as

tall grasses, seedlings/saplings, shrubs, large woody

debris (C 1000-h), and\ 1000-h woody fuels that are

supported above the ground, but cannot capture others

such as litter, duff, twigs, and branches that sit directly

on the ground surface. Due to the complex fire history

of our study area, correspondence between surface

fuel loads and proxies such as time since fire or

overstory structure are likely to be weak and idiosyn-

cratic. Although this study does not attempt to

explicitly quantify the contributions of certain surface

fuels, the models reported here nevertheless do have

explanatory power for describing the post-fire tree

mortality process.

Fig. 7 Conceptual representation of study results. Post-fire tree mortality is driven from broader scales to finer scales, where fuel and

burn weather attributes at the 90 9 90 m neighborhood scale determine the total amount of mortality and factors at the scale of small

groups of trees determine the spatial distribution of that mortality. The process of post-fire mortality at the tree-group scale can be

conceptualized as a series of filters. Fine-scale fuel connectivity determines a given tree group’s risk of fire mortality. For tree groups

with high fuel connectivity, fire tolerance determines first-year survival and local stresses determine longer-term survival. The actual

mechanisms of death vary based on timing and fine-scale structure
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Including cross-scale linkages between neighbor-

hood-level and TAO-level models substantially

improved model fits (Table 3). This aligns with the

theoretical understanding of fire’s landscape ecology,

where different scales rest within a hierarchical

structure with cross-scale interactions (Kotliar and

Wiens 1990; Hessburg et al. 2015). The degree of

improvement realized at the TAO scale was more than

at the neighborhood scale, suggesting that cross-scale

interactive drivers of fire severity exert a stronger

influence from broader to finer scales than the reverse.

This agrees with past studies that have identified

weather and climatic water balance as the most

important drivers of fire severity, upon which variation

due to finer-scale structure is arranged (Gill and Taylor

2009; Lutz et al. 2009b; Kane et al. 2015b; Lydersen

et al. 2017). However, spatial configuration of fuels at

the neighborhood scale was also an important driver:

Model SL performed nearly as well as Model STL for

TAO mortality, despite not including topography,

water balance, or burn weather predictors (Table 3). It

appears that, rather than fine-scale effects integrating

up to form a broad-scale result, the broad-scale

conditions instead form the basic template that

undergoes local modifications according to fine-scale

conditions.

Relationships between fine-scale structure

and mortality agents

For immediate mortalities, trees within taller TAOs

and trees within larger clumps suffered less crown

damage and more stem damage (Fig. 5). This could be

because the shade under spreading tree crowns and

within large clumps excludes understory vegetation;

however, it could also be that larger trees and trees in

clumps experienced similar levels of damage to

smaller trees in smaller clumps but were able to

recover better. Larger trees have more developed root

systems and are more resilient to damage, and trees in

clumps have mutually supportive root grafting and

mycorrhizal relationships that can help provide

clump-level resilience (Warren et al. 2008; Simard

2009; Salomón et al. 2016). It is also possible that trees

within larger clumps are less exposed to convection

currents that carry damaging heat into the canopy, i.e.,

local structural homogeneity encourages laminar sub-

canopy convection fields instead of turbulent vertical

mixing (Smith et al. 2016; Parsons et al. 2018).

Of delayed mortalities occurring 2–4 years post-

fire, 35% had no indications of mortality agents other

than fire damage and 71% of mortality factors in total

were fire-related. Higher crown base heights shifted

the balance of delayed mortality causes away from fire

effects. This was expected since fire effects should be

more severe when there is more live biomass near the

surface available to be injured or killed during fire and

to potentially carry flames into the canopy. An

interesting result is that the amount of fire-related

mortality was higher in high-density local areas. This

indicates that recovery from first-order fire damage,

even without subsequent stresses by beetles, patho-

gens, or mechanical damage, is density-dependent and

specifically is counteracted by high local density.

Associations between fine-scale structure and non-

fire delayed mortality agents took the form of tradeoffs

between mortality dominated by pathogens and mor-

tality dominated by beetles. Deep crowns and high

TAO density were associated with more mortality due

to pathogens, whereas the balance shifted toward

beetle kill when crown bases were high and local

density was low to moderate (\ 180 trees ha-1). This

dynamic may be due to structural correlates of species

composition. Deep crowns and high density are typical

of A. concolor, which is the species most often killed

by pathogenic mortality, while high crown bases and

lower stem density are attributes of larger P. lamber-

tiana which are the primary host of tree-killing bark

beetles in this study area.

Scaling up

Although the spatial extent of this study covered tens

of thousands of hectares and included a wide range of

environmental conditions, we did not explicitly ana-

lyze processes occurring at scales larger than the

90 9 90 m neighborhood. Our analysis captured the

variation that may occur at the 1000–10,000 ha scale

by virtue of plot placement. However, we did not

capture processes like day-to-day fire spread, which

can be driven by synoptic weather patterns and

watershed-scale topography. Other research focusing

on these scales suggests that the pattern we

observed—significant effects acting from broader to

finer scales—would hold upon expanding the hierar-

chy of scales to include larger scales like watersheds

(Gill and Taylor 2009; Collins 2014; Lydersen et al.

2017).
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Despite the relatively local scale of this study our

findings have implications for landscape ecology in

general, including studies of much larger landscapes.

For one, we found that aligning model structure with

landscape ecology theory produced a quantitatively

better model and allowed for more insightful inference

within the theoretical framework. The discipline of

landscape ecology is premised on viewing ecosystems

as hierarchical systems with cross-scale interactions;

this study makes a compelling case for building

models that reflect this premise.

Conclusions

Post-fire tree mortality is a complex process that

depends on a variety of factors at many scales. We

found that variation in mortality at the scale of trees

and small groups of trees is arranged according to

landscape-scale controls exerted by burn weather and

fuel amounts and configurations at the 90 9 90 m

neighborhood scale (Fig. 7). Within the neighborhood

context, whether a given tree was killed immediately,

died after a number of years, or survived the fire

depended on a series of conditions: tree stature, initial

fire effects, acute fire tolerance, and chronic stresses.

All of these factors tend to be spatially heterogeneous

and, in Sierra Nevada mixed-conifer forests, are

patchily distributed (Lutz et al. 2013, 2018b). This

emphasizes the importance of incorporating spatial

patterns and spatial context when studying fire effects

on vegetation. These ideas can also be incorporated

into restoration treatments aimed at modifying fire

behavior and effects (North et al. 2009; Churchill et al.

2013; Maher et al. 2019).

Our analysis of links between structural conditions

and mortality agents revealed that structural condi-

tions associated with resistance to one type of

mortality agent often indicate susceptibility to another

agent (Fig. 5). This suggests that landscape-scale

heterogeneity in forest structure can provide a spatial

balance of resistance to different mortality agents, and

thus could be an important element of landscape

stability and multi-scale resilience.
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