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Abstract. The fire regime is a central framing concept in wildfire science and ecology and describes how a range of
wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding

appropriate management and risk reduction strategies and for informing research on drivers of global change and altered
fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire
parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide

differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better
alignwith ecosystem types, without using fire as part of the definition.We used an unsupervised classification algorithm to
segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire

regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well
with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size,
with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with
limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.

Additional keywords: classification, ecosystems, fire frequency, fire history, global change, land cover, pyrogeography,

scale.
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Introduction

Central towildfire science is the concept of the fire regime,which

describes the long-term range of variation inherent in wildfire
characteristics in a given ecosystem, including fire frequency,
size, severity, seasonality and pattern (Bond and van Wilgen

1996). In addition to describing the characteristics of wildfires
over time, the fire regime concept is also used to distinguish how
fires vary geographically and in different ecosystems.

Defining fire regimes for different regions provides an impor-

tant framework for guiding management and assessing risks to
human communities and ecological systems. This is because,
despite the natural stochasticity of wildfire, understanding a

region’s characteristic fire regime provides a reference for what
can be expected and in turn, for understandingwhen the system is
behaving unexpectedly (Safford and Van de Water 2014).

Given the ubiquity of the fire regime concept in fire science
and ecology, several efforts have been made to distinguish fire
regimes geographically (Morgan et al. 2001; Keane et al. 2003;

Falk et al. 2007), and the term ‘pyrogeography’ has emerged as a
framing concept to describe the geographical distribution of fire
relative to its human and biophysical drivers (Bowman et al.

2011).Maps of different fire regime regions provide guidance to

managers relative to which strategies may be most effective for
balancing fire risk reduction with natural resource protection.

Maps of fire regime regions may also be helpful for scientific
research endeavours meant to assess drivers of altered fire
regimes (Keeley and Pausas 2019) and to project potential

future scenarios relative to an appropriate baseline. For exam-
ple, recent work provides evidence that climate–fire relation-
ships vary from region to region, likely due to differences in the
effects of human and biophysical drivers on fire initiation and

behaviour (Littell et al. 2009; Keeley and Syphard 2017;
Syphard et al. 2017). Thus, assessing historical or projecting
future fire activity should be performed relative to the limits of

the fire regime under consideration.
While fire regimes have been delineated geographically,

those efforts have focused on identifying spatial clusters where

there are natural groupings of fire regime characteristics. For
instance, the LANDFIRE program in the USA provides nation-
wide consistently mapped fire regime data products with fire

regime groups based on fire severity and frequency (Rollins
2009). Bradstock (2010) characterised the biogeography of fire
across Australia based on fire regime characteristics that
included biomass, availability to burn, fire spread and ignitions.
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Archibald et al. (2013) used a different suite of fire character-
istics, including frequency, intensity, season and extent to define
global patterns of fire regimes, or ‘pyromes’, in their terminol-

ogy. Others have used a similar approach (Moreno et al. 2014).
The Archibald et al. (2013) analysis showed that different

biomes and climates could produce the same fire regime. For

example, the low-frequency/high-severity fire regime group in
LANDFIRE combines deserts, very wet forests and high-
elevation forests.Whitlock et al. (2010) provided a paleoecologi-

cal perspective that indicated this approach of defining regimes
based on fire characteristics should be reconsidered because fire
regimes changewithin the same biome over time. They cautioned
that this characteristic would be problematic whenmaking future

forecasts of fire regimes, which is especially critical given
expected changes in vegetation over time (Syphard et al. 2017).
In addition to issues related to combining very different ecosys-

tem types, delineating fire regime ecoregions using fire para-
meters to define them may be limited by the quality, scale and
availability of different types of fire data. For instance, there is

better information and mapping for fire frequency than for other
fire characteristics (Morgan et al. 2001).

We took a different approach and defined fire regime

ecoregions for California by spatially segregating the state into
natural clusters with distinctive biophysical and anthropogenic
attributes, and then evaluated how well these ecoregions com-
pared in terms of fire regimes – without using fire as part of the

ecoregion definition. That is, instead of using fire to drive the
classification, we interpreted the classification in terms of how
well different regions distinguished historical characteristics of

wildfire. This approach highlights the important drivers of fire
regimes and produces clusters that are better aligned with a full
range of ecosystem characteristics that, when combined, mani-

fest in different spatial and temporal patterns of wildfire. This
approach could also improve upon fire regime forecasting by
accounting for changes in the drivers of altered fire regimes.

We intend this classification to be useful for framing scien-

tific analysis in which interpretation depends upon character-
istics of region-specific fire regimes. This mapping approach
may also be useful for decision-makers looking to prioritise

management actions in line with a region’s distinctive fire
regimes. California is a heterogeneous state with diverse eco-
systems and fire regimes and we offer this digital fire ecoregion

map as a potentially useful tool for interested stakeholders.

Methods

Our overall approach was to first develop a statewide map
classification using a database of spatial layers representing a
wide range of factors associated with differentiating fire

regimes. After creating several versions of these maps, we then
used available fire data to explore the fire regimes within these
regions. We assembled a geographical dataset with variables

representing a range of topographic, climatic, vegetation and
anthropogenic variables that have been significantly associated
with geographical variation in California fire regimes (Barbour

et al. 2007) (Table 1). All variables were numeric, and we
normalised the grids so values fell within a range of 0–100. This
normalisation ensured that large differences in numeric ranges
of the data would not disproportionately weight any variable

over the others. We also resampled all grids to match the reso-
lution of the climate data, which was 270 m.

After assembling all geographical data layers, we used

ENMTools (Warren et al. 2010) to calculate a pairwise correla-
tion matrix for all variable combinations. To perform the classi-
fication, we used a K-means ISODATA clustering algorithm

(Ball andHall 1965)withArcGIS software (ESRI,Redlands, CA)
to derive classified maps. The ISODATA algorithm is an unsu-
pervised clustering approach,meaning it discovers the underlying

structure of the data without preconceived labels or definitions.
The algorithmworks by iteratively assigning grid cells to one of a
specified number of classes based on its similarity to class means
in multidimensional attribute space, resulting in a set of maxi-

mally homogeneous and distinctive classes of varying size.Given
that the algorithm defines clusters based on similarity of environ-
mental characteristics, the resulting mapped classes are not

necessarily adjacent. We specified the model to iterate 20 times
through the maps to optimise assignment and reassignment of
grid cells to clusters based on recalculated cluster means for each

iteration. We evaluated 6–8 clusters using variables uncorrelated
at or above r ¼ 0.70 and r ¼ 0.80.

For all mapped classes, we used a zonal statistics algorithm to

extract mean values for historical fire count, fire size and
expected fire severity (variables described in Table 1). We then
compared maps by calculating the standard deviation of mean
values, providing a measure of class variability. We also

tabulated the area and proportion of different land cover types
within ecoregion classes to visually compare class separability.
We purposely excluded vegetation type in our classification

process, in part because map classifications can be subjective;
however, vegetation class may be an indicator of differences in
fire regimes (Wells et al. 2004; Davis and Borchert 2006).

Results

Of the fire regime ecoregion maps that we generated, there were

larger differences among the standard deviations of the maps,
representing differences in class separability, for fire frequency
and size than for fire severity; the map with the highest standard

deviation for mean fire frequency andmean fire size was the one
with eight classes and variables correlated at r ¼ 0.7 (Table 2,
map shown in Fig. 1a; mean variable values in Appendix 1).

This was also the map with the lowest standard deviation in the
means of fire severity in the classes. The means of fire severity
for all maps fell within the range of 2 and 3 out of a classification

ranging from 1 to 4.
In the displayed map, fire frequency and fire size were both

highest in ecoregions 5 and 8 (Table 2, Fig. 2b, c). Ecoregion 5
was dominated primarily by herbaceous, lowland chaparral and

sage scrub and hardwood woodland vegetation, and occurred
mostly along the coastal and Sierra Nevada foothills (Fig. 2d).
Region 8, with the highest frequency and size, was dominated

more by conifer, along with shrub and hardwood forest, and was
smaller and more widely geographically dispersed (Fig. 2a–d).
The two ecoregions with the lowest fire frequency were regions

3 and 4, largely representing the desert south-western portion of
the state and the coastal urban and central valley agricultural
areas respectively (Table 2, Fig. 2a–d). Fire size was much
larger in region 3 than in region 4.
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Discussion

In contrast to previous approaches to defining fire regimes using

fire statistics (e.g. Bradstock 2010; Archibald et al. 2013;
Moreno et al. 2014), we adopted an unsupervised clustering
approach to spatially delineate fire regime ecoregions using

variables long known to drive fire patterns and behaviour
(Bowman et al. 2011). Subsequent quantification of historical
fire frequency and size across regions, in addition to variability
in vegetation type across classes, showed substantial separation

for most maps and cluster combinations. Fire severity was more
uniformly distributed among classes. These differences across
classes indirectly demonstrate the extent to which vegetation,

climate, human presence and geomorphology are related to fire
regimes in California and this approach provides a newmeans of
geographically distinguishing fire regimes. Given widespread

limitations in fire mapping and statistics (Morgan et al. 2001;
Syphard and Keeley 2016), deriving classified maps from fire

regime drivers may provide a more robust means of delineating
fire regime variation. This approach could be replicated in any
fire-prone area to account for the unique combinations of fire

regime drivers in different regions.
The ecoregion concept has long been acknowledged and

incorporated into research and management in ecology (Bailey

1980; Omernik 1987); one useful framework for ecoregion

classification has been to define a spatial hierarchy of levels, or

boundaries, consisting of different numbers of nested regions

(Omernik and Griffith 2014). Although we compared limited

combinations of 6–8 classes and two correlation coefficients,

other classifications could extend this hierarchical framework to

include additional levels of fire regime classes or alternative

variable combinations to fit different management or research

objectives. Most ecoregional classifications are mapped using

discrete boundaries around contiguous areas (e.g. Omernik

1987), but we provide the map as is, reflecting the inherent

Table 1. Variables used in the classification and evaluation of fire regime ecoregions in California

FPA-FOD, fire program analysis fire-occurrence database; NDVI, normalised difference vegetation index

Category Data layer Description Source Used to

classify

Fire Historical frequency Mean count of fires in each cell, averaged across all

cells within fire regime ecoregion 1978–2015

http://frap.fire.ca.gov/data/frapgisdata-sw-

fireperimeters_download

Severity Historical severity class (i.e. effect on landcover) for

wildfire disturbance 2006–2016. Classes ranked

numerically (1–4) for unburned/low, low, medium

and high severity and averaged per fire regime

ecoregion within disturbance footprints

https://www.landfire.gov/hdist.php

Size FPA-FOD, 1992–2015, inverse distance weighted

spatial interpolation based on fire size attribute (ha)

https://www.fs.usda.gov/rds/archive/Prod-

uct/RDS-2013-0009.4/

Terrain Elevation Height above sea level (m) https://www.landfire.gov/elevation.php X

Topographic heterogeneity Range of elevation values within 810-m radius from

centre cell (0–1)

Nature Serve (https://databasin.org/datasets/

1f86100938b544a3b6361eee6ac05945)

X

Climate Annual precipitation Mean sum over calendar year (mm), 1981–2010 http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Summer precipitation Mean sum over June, July, August (mm), 1981–2010 http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Annual minimum temperature Mean minimum temperature of December, January,

February (8C), 1981–2010

http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Annual maximum

temperature

Mean maximum temperature over June, July,

August (8C), 1981–2010

http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Actual evapotranspiration Total annual water evaporated from surface and

transpired by plants (mm), 1981–2010

http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Climatic water deficit Annual evaporative demand exceeding water

availability (mm), 1981–2010

http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Snow water equivalent Amount of water contained within snowpack (mm),

1981–2010

http://climate.calcommons.org/dataset/2014-

CA-BCM

X

Vegetation NDVI annual minimum 30-year means of annual minimum NDVI,

Landsat TM, 1984–2010 (�1 – 1)

http://climateengine.org/data X

NDVI annual maximum 30-year means of annual maximum NDVI,

Landsat TM, 1984–2010 (�1 – 1)

http://climateengine.org/data X

Vegetation type Habitat and land cover types spanning 1990–2014 https://frap.fire.ca.gov/mapping/gis-data/

Land use Housing density Derived from US Department of Commerce, US

Census Bureau partial block groups, 2000, units per

square km

http://silvis.forest.wisc.edu/data/housing-

block-change/

X

Distance to roads Derived Euclidean distance to TIGER line files 2015,

USDepartment of Commerce, USCensus Bureau (m)

https://www.census.gov/geo/maps-data/data/

tiger-line.html

X

Fire regime ecoregions Int. J. Wildland Fire C
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Table 2. Fire statistics for eight fire regime ecoregionmaps consisting of 6-8 classes and two correlation cut-off points in the unsupervised clustering

analysis

The bold text shows standard deviations. Fire statistics are described in Table 1

Ecoregion

number

Mean frequency

(number fires per cell)

Mean frequency

(number fires per cell)

Ecoregion

number

Mean size

(ha)

Mean size

(ha)

Ecoregion

number

Mean severity

class (1–4)

Mean severity

class (1–4)

r¼ 0.70 r¼ 0.80 r¼ 0.70 r¼ 0.80 r¼ 0.70 r¼ 0.80

1 0.254 0.262 1 299.196 261.453 1 2.286 2.361

2 0.259 0.250 2 284.217 123.425 2 2.304 2.060

3 0.063 0.017 3 137.415 136.232 3 2.095 2.028

4 0.094 0.179 4 74.746 107.803 4 2.118 2.062

5 0.698 0.594 5 319.667 242.423 5 2.389 2.504

6 0.358 0.239 6 121.203 146.299 6 2.548 2.479

7 0.233 0.802 7 166.321 485.295 7 2.371 2.467

8 0.978 0.591 8 594.470 342.654 8 2.561 2.504

0.314 0.265 166.512 131.527 0.173 0.219

1 0.257 0.257 1 260.033 268.398 1 2.329 2.342

2 0.019 0.012 2 132.590 119.519 2 2.033 2.017

3 0.111 0.186 3 88.243 120.014 3 2.106 2.077

4 0.687 0.586 4 300.099 240.494 4 2.389 2.530

5 0.393 0.260 5 166.796 152.377 5 2.443 2.510

6 0.234 0.546 6 157.418 370.810 6 2.410 2.343

7 0.876 0.652 7 566.218 368.634 7 2.582 2.525

0.310 0.239 161.847 108.650 0.194 0.213

1 0.263 0.256 1 247.359 252.097 1 2.352 2.348

2 0.023 0.024 2 136.473 135.466 2 2.036 2.038

3 0.187 0.177 3 114.806 114.849 3 2.129 2.067

4 0.617 0.704 4 261.195 307.766 4 2.456 2.465

5 0.248 0.311 5 170.946 208.082 5 2.451 2.532

6 0.792 0.668 6 475.859 378.633 6 2.525 2.508

0.289 0.273 131.990 101.249 0.198 0.222

Fire regime
ecoregions

(a) (b) (c) (d )Fire count
1978–2015

Fire size (ha)
1992–2015

Land cover type

1

2

3

4

5

6

7

8

1
0

2–3
4–6
5–14

0–661.3
Agriculture
Barren/other
Conifer forest
Conifer woodland

Desert woodland
Hardwood forest
Hardwood woodland
Herbaceous
Shrub
Urban
Water
Wetland

Desert shrub

661.4–1708.4
1708.5–2755.5
2755.6–3802.6
3802.7–4849.7
4849.8–5896.8
5896.9–315245

Fig. 1. Maps showing (a) fire regime ecoregions with variables correlated at r# 0.7; (b) historical fire count, (c) historical fire size and (d) land

cover type in California.
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geographical heterogeneity that distinguishes fire regimes. For

research or management applications that necessitate discrete
boundaries, different smoothing algorithms could be applied to
the map. Otherwise, one option for spatial analysis would be to
assign the majority class of fire regime ecoregion to different

maps of interest. For example, an analysis of the role of fire
weather or climate in driving historical fire activity could be
segregated into different analyses to account for differences in

fire regimes and the majority fire ecoregion type could be
assigned to each fire perimeter across the entire extent of analysis.

Some of the independent data, such as climate and the

normalised difference vegetation index, represent averages over
an approximate 30-year time period, from 1980 to 2010, with the
map of housing density falling in between that range. Therefore,
analysis or management decisions deriving from this classifica-

tion should be considered in this temporal context, given how
global fire and vegetation patterns are rapidly changing (Franklin
et al. 2016). Nevertheless, fire regimes are the product of long-

term spatial and temporal variations in fire and most input
variables were either static or slowly varying; thus, analyses
extending slightly beyond this temporalwindoware likely robust.

One of the most important reasons for performing analysis or
making management decisions according to specific fire
regimes is that empirical relationships between fire and its

drivers are not stationary. Assuming stationarity across regions
that encompass widely varying fire regimes could result in
analyses that mask or confound empirical relationships or
management actions that produce unintended outcomes.

Accounting for fire regime ecoregions could also be useful for
ecological analysis andmanagement. This is because most biota

in fire-prone ecosystems are adapted to specific fire regimes

(Keeley 1986; Bond and van Wilgen 1996) that when altered
threaten their persistence (Franklin et al. 2016). Thus, it is
important to account for the distinctive characteristics of wild-
fires that resulted in these species’ adaptations.

In terms of projecting future fire regimes, there are a range of
dynamic models available that simulate potential fire behaviour
andvegetationpatterns under changing environmental conditions,

but many have drawbacks, and uncertainty is an ongoing concern
(Keane et al. 2019). Fire regime ecoregion mapping could be an
additional tool for framing interpretation of projections because of

the focus on the multivariate drivers of fire regime change rather
than the outcome of change (i.e. differences in fire patterns).
Peters et al.(2004) provided amodel for how to deal with the non-
linearities in complex problems such as wildfire forecasting. One

of the tricky problems involves expected fire-driven type conver-
sions (e.g. Davis et al. 2019; Syphard et al. 2019) and thus, it may
be necessary to account for expected changes in vegetation as

drivers of fire regime changes (Syphard et al. 2018). Future fire
ecoregion maps could be derived using mapped projections of
vegetation or the other dynamic variables used here.
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Appendix 1. Mean values of biophysical and anthropogenic variables summarised after unsupervised classification of eight
California fire regime ecoregions (variable descriptions provided in Table 1)

NDVI, normalised difference vegetation index

Ecoregion number

1 2 3 4 5 6 7 8

Region size (million ha) 37.49 12.36 109.26 76.65 69.02 39.71 28.15 30.68

Elevation (m) 1619.36 1235.86 697.58 122.97 502.17 1197.45 2491.49 1020.8

Topographic heterogeneity (0–1) 0.17 0.81 0.16 0.05 0.43 0.52 0.72 0.9

Annual precipitation (mm) 566.06 235.01 157.61 416.77 727.38 1493.67 967.41 1177.96

Summer precipitation (mm) 12.42 7.77 6.35 2.07 3.33 14.37 12.69 9.48

Annual snowpack (mm) 127.66 1.15 0 0 0.04 157.32 531.37 56.81

Annual minimum temperature (8C) �5.77 1.39 3.03 4.13 3.53 �0.7 �7.32 1

Annual maximum temperature (8C) 26.51 33.34 36.84 32.84 30.31 26.61 21.05 28.75

Actual evapotranspiration (mm) 258.76 175.23 144.42 319.72 380.78 448.38 258.55 388.45

Climatic water deficit (mm) 86.72 97.1 94.08 108.27 103.19 88.16 101 93.9

NDVI annual minimum(�1–1) 0.22 0.07 0.06 0.16 0.3 0.45 0.21 0.38

NDVI annual maximum(�1–1) 0.44 0.2 0.18 0.61 0.63 0.74 0.42 0.71

Housing density (units km�2) 1.39 2.02 7.85 126.23 9.94 0.45 0.03 0.41

Distance to roads (m) 658.84 2620.21 1331.52 270.87 557.36 470.33 4397.37 1202.57
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